[Total No. of Questions - 8] [Total No. of Printed Pages - 3] (2123)

1619

M. Tech 3rd Semester Examination

Advanced Mathematics

EC-306

Time: 3 Hours

Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt any five questions.

 (a) Find a power series solution in powers of x of the following differential equation

$$y'' - 3y' + 2y = 0 (8)$$

(b) Express $x^3 + 2x^2 - x - 3$ in terms of legendre polynomial. (4)

(c) Show that
$$\int_{-1}^{1} (1-x^2) \left[P_n'(x) \right]^2 dx = \frac{2n(n+1)}{2n+1}$$
 (8)

2. (a) Find the basic solution of the differential equation by Frobenius method:

$$(x-1)^2 y'' + (x-1)y' - 4y = 0$$
 (10)

(b) Prove.that:

$$\frac{d}{dx} \left[J_n^2(x) \right] = \frac{x}{2n} \left\{ J_{n-1}^2(x) - J_{n+1}^2(x) \right\}$$
 (10)

3. (a) Obtain the solution of given equation in terms of Bessel function:

$$xy'' + 2y' + \frac{1}{2}xy = 0 {10}$$

1619/80 [P.T.O.]

(b) Find the eigen values and eigen functions of the given problem.

$$(x^{-1}y')' + (\lambda + 1)x^{-3}y = 0$$

 $y(1) = 0, y(e) = 0$ (10)

- 4. (a) Find the bilinear transformation which maps the points z = 0, -i, -1 into the points w = i, 1, 0. Also find the image of the line y = mx under this transformation. (10)
 - (b) Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 2yz + 2zx 2xy$ to the canonical form. Also specify the matrix of transformation. (10)
- 5. (a) If α and β are imaginary cube roots of unity, prove that $\alpha e^{\alpha x} + \beta e^{\beta x} = -e^{-x/2} \left(\cos \frac{\sqrt{3}}{2} x + \sin \frac{\sqrt{3}}{2} x \right) \tag{7}$
 - (b) If $\cos^{-1}(u+iv) = A+iB$, Prove that $\cos^2\alpha$ and $\cosh^2\beta$ are the roots of the equation:

$$x^{2} - (1 + u^{2} + v^{2})x + u^{2} = 0$$
(7)

- (c) Prove that $Log_i i = \frac{4m+1}{4n+1}$, where m and n are integers.
- 6. (a) Show that:
 - (i) The eigen values of a skew Hermitian matrix are purely imaginary or zero.
 - (ii) A Hermitian matrix remains Hermitian when transformed by an orthogonal matrix. (10)
 - (b) Solve the following system of equation by Gauss elimination method:

$$5x_1 + x_2 + x_3 + x_4 = 4$$

$$x_1 + 7x_2 + x_3 + x_4 = 12$$

$$x_1 + x_2 + 6x_3 + x_4 = -5$$

$$x_1 + x_2 + x_3 + 4x_4 = -6$$
(10)

7. (a) Using Crout's traingularization method, solve:

$$x + y + z = 1$$

 $4x + 3y - z = 6$
 $3x + 5y + 3z = 4$ (10)

(b) Solve the following system of equation by Jacobi's method: 5x + 2y + z = 12

$$x + 4y + 2z = 15$$

 $x + 2y + 5z = 20$ (10)

8. (a) Using any iteration method, find all the eigen values and the eigen vectors of the matrix

$$\begin{bmatrix} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{bmatrix}$$
 (10)

(b) What is meant by Monte-Carlo method of simulation? Discuss its scope and use in problems encountered in waiting line. (10)